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MODELS OF ALLOSTERIC ENZYMES AND THEIR ANALYSIS
BY THE GRAPH THEORY METHOD

M. V. Vol'kenshteyn and B. N. Gol'dshteyn

Using the very simple example of a dimer protein, pos-
sible equilibrium cooperative models intended for descrip-
tion of the properties of allosteric enzymes were considered.
Together with indirect cooperation, involved in the model of
Monot et al. [1], the "direct" cooperation arising as a re-
sult of direct interaction of active centers was investigat-
ed. Computations were made for the influence of an allo-
steric inhibitor and a competitive activator on the activi-
ty of an enzyme. The results of the computations made by
the graph theory method proposed in an earlier study are in
qualitative agreement with the data of Gerhart and Pardee
for aspartate transcarbamylase. The proposed models are
described by equations containing fewer constants than the
model of Monod et al.

The kinetics of allosteric inhibition and activation of a number of en-
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zymes now have been investigated. The principal characteristics of allosteric
enzymes have been determined as a result of these studies: 1) allosteric pro-
tein contains two or a greater number of active centers; 2) these centers are
equivalent -- the protein therefore has a symmetrical quaternary structure and
is a symmetrical oligomer; 3) the kinetics of interaction of a protein with a
substrate and with allosteric effectors is cooperative, which is manifested in
the presence of a "knee" in the curve of the dependence of the rate of reaction
on the concentration of the substrate, and accordingly in the curve of satura-
tion of the enzyme by the substrate. This cooperation may be destroyed as a
result of various influences on a protein molecule. The presence of coopera-
tion means a dependence of the interaction in a particular active center on the
status of the other active centers, on whether they are occupied (and specifi-
cally by what) or free.

Hemoglobin is a well-studied example of an allosteric protein. In a re-
cent study by Monod et al. [1l] they propose a model of an allosteric protein
and investigate its properties. The model is a symmetrical oligomer consisting
of n protomers. Therefore, there are n equivalent active centers. It is as-
sumed that the oligomer may be in two or more different states, differing in
their affinity to the substrate and effectors. The model therefore is coopera-
tive: because the joining of one molecule of the substrate is characterized by
a different affinity and different state of the protein, the equilibrium be-
tween these states is displaced as a result of such joining and a second mole-
cule of the substrate interacts with the protein, already changing. Therefore,
the joining of the substrate to a particular active center exerts an influence’

*/Numbers in the margin indicate pagination of the original foreign text.
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on joining in other active centers. Monod and his associates [1] demonstrate
that the model leads to results qualitatively in agreement with the results of
investigation of a number of allosteric enzymes and hemoglobin.

The simplest model, possessing the above-mentioned properties, is a dimer,
obviously possessing a second-order axis of symmetry. The region of interaction
of the two protomers consists of two identical sets of functional groups (to
use Monod's terminology [1], this is an isologic dimer). We will assume, going
along with the mentioned authors, that the protein may be in two states: R and
T. Each of them has three substates: ROO’ R10 = ROl’ Rll’ and accordingly,

Too» T10 = T01, T11 (two active centers, 0 -— a free center and 1 —- a center

occupied by a molecule of the substrate S). The equilibrium conditions are:
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The total quantity of enzyme is
|E=Rio+-Rio+Ru+Tog + TrgdfFar. 2)

Here Kp and Ky are the dissociation constants in the states R and T, and L is
the equilibrium constant for the tramsition Ry, <> Tpg. It is assumed that the
dissociation constant is the same in Rip and Rll (and, accordingly, in TlO and

Ty1). The saturation function by the substrate is
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where ¢ = Kg/KT. When ¢ = 1, or when L » 0, cooperation disappears; Y =

KRiS * Q is the denominator of (3).

The corresponding expression for the rate of the reaction, obtained from
the equilibrium conditions, has the form



(4)

where k;, is the rate constant for the states Ryj = Rgp and Ryq, and Xk, for the
states Tyg = Tgy and Tqq.

It is possible to consider a model alternative to the Monod model [1], not
assuming the existence of several states R, T..., but only one state F with in-
ternal cooperation. Constants of the type Kg and k;, are assumed to be differ-

ent for Fi0 = Fo1 and Fy;, in other words, the joining of one molecule S exerts

a direct influence on the interaction of a second molecule S with protein.
Such a model has a graphic physical sense —-- the joining of S changes the qua-
ternary and possibly the tertiary and secondary structure of the protein. Ob-
viously, we refer here to cooperation of a different type, which we will call
direct cooperation, in contrast to indirect cooperation, investigated by Monod
et al. [1] (see [2]).

An earlier study [3] considered a corresponding example -- a symmetrical
dimer with direct cooperation. In this case the saturation function has the
form
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“where ko, Kj, K2 have the same sense as in [3],){:= k4/k2. Expressions (5) and/681

(6) have a simpler form than (3) and (4) respectively and contain one less con-
stant. At the same time, they lead to similar qualitative results. The quan-
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titative results, to be sure, diffe
semi-saturation, that is, when vy =
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according to formula (5),
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‘where n = K2/K1.

Computation of the equilibrium model obtained by Monod et al. can be done
easily by the graph theory method [3]. This model assumes the presence in a
molecule of the enzyme of states existing in equilibrium in pairs, and thus des-
cribes a special case of a stationary enzymatic reaction.

The model of stationary enzymatic reactions requires determination of the
equilibrium of each state of the enzyme with several other states. Therefore,
the theory of graphs, developed for stationary processes, also is applicable
for equilibrium processes. As an example Figure 1 shows the graph for a dimer
equivalent to the system of equations (1) and graphically representing the pos-
sible transitions. Here b/k3 = Kg, a/kl = Ky, and k_/k = L. The arrows anno-

tating P show the release of a product with the cor-
responding rate constant kg or k4. The rate of reac-

tion (4) can be obtained from an analysis of the
graph. Paired equilibrium leads to the appearance of
cooperative transitions, that is, transitions depen-
dent on one another. Such dependent transitions in
Figure 1 are the transitioms Rj; <> T;; and Riop &

T1gp. They are represented by the dashed arrows and

may be neglected when computing the graph.

. The state T or the state R in Figure 1 each can
Figure 1. Graph for a be considered separately as a model of a dimer with
Dimer. direct cooperation [2] if it is taken into account

that the second molecule of the substrate is sorbed
in the enzyme differently from the first. Thus, the model of Monod et al.,
taking into account equilibrium and without the joining of a link contains a
greater number of constants and states than a model without such additional
equilibrium.

Now we will consider a model of an allosteric enzyme, assuming that the
states of the enzyme change only as a result of the joining of a link. If only

paired equlllbrlums are taken into account, we obtaln 51mple c00perat1ve models/682
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Allosteric inhibition. Now we will consider a model of an isologic dimer
with two equivalent active centers in relation to the substrate S and two cent-
ers in relation to the inhibitor I. We will assume that the enzyme can be in
three equilibrium states F, F' and F", where F is an enzyme free of the inhibi-
tor, F' is one center occupied by an inhibitor, and F'" are both centers occup-
ied by an inhibitor.




In each of these states a molecule of the enzyme can sorb one or two mole-
cules of the substrate on active centers. In addition, we take into account the
direct cooperation during the joining of the substrate in a state free of the
inhibitor F. Together with the inhibitor in one (F') or in two (F") centers the
enzyme loses direct cooperation for the joining of the substrate.

Figure 2 shows the graph for this model. Here F, Fl’ and Fy are the con-

centrations of the enzyme, free of the inhibitor, accordingly without a sub-
strate, with one center, occupied by the substrate, and with two centers, oc-
cupied by the substrate. F', F';, F'y are the same for an enzyme with one

[F s a2f s 20 F,

Figure 2. Graph for a
Dimer with Inhibition.

center, occupied by an inhibitor, and F", F"l, F"2 -- with two centers, occup-
ied by an inhibitor. The dashed line shows cooperative joinings of the inhi-

bitor.

Now we will compute the rate v of reaction, using the graph theory method
described in the earlier paper [3]. We have

v=E-55 (9)

Here summation is carried out for all the nodes of the graph. We will
simpiify the graph using equilibrium relaiions. In order iv compute each base
. . . . " .
determinant D; it now is necessary to consider only one tree':

D= 2ba2a'a b2k k.
' = 2ba2a'a’2' ' e 2k |
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‘Now the derived expression will be analyzed. In the absence of an inhibitor /683
(equilibrium is displaced to the state F), we obtain the cooperative kinetics
(compare [2, 3]):

_ K+ &
L 253-——!§—K,+2K,s+s, (11)

“where K' = b/kg, and K = a/kl. When K = K' and ky, = ky (absence of coopera-

tion); the usual Michaelis-Menten expression is

Lffj‘ﬁ (12)

"In the case of a large excess of the inhibitor the equilibrium is displaced to
the state F" and cooperation disappears

U1we=2E
e K+S

K= | (a3

' The maximum rate is
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If the catalytlc activity of the enzyme in the states F, F' 25 and F'2 is iden-
tical, k, = =k'y,

Voax = 2k4E,

that is, is not dependent on the concentration of the inhibitor. Similar re-
sults were obtained by Gerhart and Pardee for aspartate transcarbamylase
(ATCase), for which S is aspartic acid, and I is cytidine triphosphate [4]. If
there is no direct cooperation, kl = k3, k2 = k4, and a = b, with a constant

concentration of the inhibitor we obtain the cooperative kinetics as a result
of indirect cooperation

h 9Es — Kt KaS (15)
M K"—.+ K‘S+K.S'

“where the concentration of the inhibitor is included in the constants.

In the absence of direct and indirect cooperation, that is, when

‘we obtain the Michaelis-Menten expression
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‘The degree of inhibition is
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"where




If one type of cooperation remains, either indirect: : /684

Lo =t a=b, ky=by k=i ky= by, by =}, (18)
or direct:
B=a =t >b =k =k<k h=hk=k "k (19)
‘Wwe obtain an expression of the form
) - 12k +&D
I i=F ; = ] (20)
! K 2k_+ kD) + K,
‘where Kl and K9 include the concentration of the substrate. With condition
(19), Ky = (ak3S)_l(ab + 2bk'Ss + klk382). In the case of large I
b= Ky  ab - 2bk,S +kiksS? iy (

Thus, the dependence i(I) is represented by a curve tending to saturation
when I - », The value i(I . «) decreases with an increase of S.

These results also are similar qualitatively to those obtained by Gerhart
and Pardee [4]. However, the investigated model cannot be considered adequate
for the system studied quantitatively by these authors. ATCase apparently con-
tains four, rather than two active centers, which will be taken into account in
subsequent computations. With respect to allowance for the second substrate in
this system, its corcentration apparently is included in the corresponding con-
stants.

In the considered case both types of cooperation lead to equivalent re-
sults.

Effect of an activator. Now we will consider the action of the effector
A, being an analogue of the substrate. Joining in one of the two active cen-
ters, the effector exerts an influence on the interaction of the protomers, in-
creasing the affinity of the unoccupied active center to the substrate. At the



same time, in occupying the active centers the effector decreases the number of
centers free for the substrate.

Therefore, in the case of small concentrations the effector should act as
an activator, and in the case of large concentrations as an inhibitor. We will
call such an effector a competitive activator.

Figure 3 shows a graph of the corresponding model. The dashed line shows
the cooperative joining of an activator to the state of an enzyme, one center

of which is occupied by the substrate.

. Faa

nA

We will consider three states of an enzyme
with different filling of the centers by an
activator: F -- an enzyme free from an acti-
vator, Fy —— an enzyme, one center of which

is occupied by an activator, FAA -— an en-

zyme, both centers of which are occupied by
a competitive activator and which therefore
forms an inactive complex.

These three states are in paired
equilibrium. The joining of the substrate to
an enzyme existing in each of these states, if it
is possible, displaces the equilibrium and indir-
ect cooperation thereby is manifested. 1In the /685
state F there can be joining of two molecules of the substrate. We will assume
that it occurs with direct cooperation. The notations are as follows: F00 is

Figure 3. Graph for the -
Competitive Activation of
a Dimer.

the concentration of the free enzyme; FOS is the concentration of an enzyme
binding one molecule S; FSS is the concentration of an enzyme binding two mole-
cules S in two active centers; FOA is the concentration of an enzyme binding
one molecule A, F,, ~- binding two molecules A; and Fpg —— one center joins S
and the other A.

It is not difficult to find the base determinants DOO’ DOS’ DOA’ DAA’ and
Dpg. We will assume as a simplification that cooperation is associated only

with the difference of affinity of the enzyme to the substrate in different
states with an identical catalytic activity, that is, the product is released
from all the states with the identical rate constant kj. Then the rate of
reaction is:

(23)

We will consider the following four cases:




1) k3 = k'3 and b = b' —— both cooperation mechanisms are present for

the substrate;

2) ky = k3 and a = b —— only indirect cooperation is present for the sub-
strate;

3) kl = k3 = k'3 and a = b = b' —— cooperation for the substrate is ab-
sent;

4) A = 0 -- only direct cooperation is present.

In the first case the rate of the reaction is:

» K ky (5 + £,S) + akk,A D
. Kky(eb+ 26k,S + kikyS?) + 2akky (b + kyS) A4 abkk A

S

(24)
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With large A, v > O, that is, A operates as an inhibitor. It is exactly in
this way that maleate influences ATCase [4]. With an increase of A the curve
v(A) passes through a maximum, satisfying the condition

(25)
or
(@B gty A" 1 26k’ R, (b + £oS) A -+ KRtk (1fsS® + 20k, S —e):| (25a)
When ki }»kl, a }»b the concentration A, corresponding to the maximum v,
| A= K2' Y T—2KsS — KssO%\ (26)

where

Obviously, the maximum can be observed only with small S. In the case of small
concentrations of maleate, ATCase is activated [4]. In this case a maximum ac-
tually is observed on the curve of the dependence v(A), disappearing after
heating of the enzyme. If the heating destroys cooperation, that is, it is
necessary to consider the third case, and if k = k) and k' = k'p, (23) becomes

(27)

10
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that is, A acts as an ordinary competitive inhibitor. This once again is in /686

qualitative agreement with the data for ATCase in [4]. When A = 0 we obtain
direct cooperative kinetics (fourth case):

PREY Y o
Et-.af:“%’Exx' 2SS

If only indirect cooperation for the substrate (second case) is present we ob-
tain from (23)

lv—oEs.KitK$S (29)
, . K,—}-,l{.S+K58’ '

where the constants include the concentration of the activator.

Thus both types of cooperation also lead in this case to equivalent re-
sults.

Conclusions

Using the very simple example of a dimer protein we considered possible
equilibrium cooperative models intended for description of the properties of
allosteric enzymes. Together with indirect cooperation, involved in the model
of Monod et al. [1], we investigated the "direct'" cooperation arising as a re-
sult of direct interaction of active centers. Computations were made for the
influence of an allosteric inhibitor and a competitive activator on the activ-
ity of an enzyme. The results of the computations made by the graph theory
method proposed in an earlier study are in qualitative agreement with the data
of Gerhart and Pardee for aspartate transcarbamylase. The proposed models are
described by equations containing fewer constants than the model of Monod et al.
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